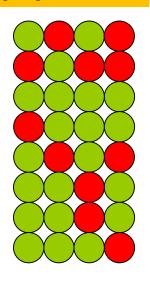


ENSURE - Educating students for developing high quality research skills

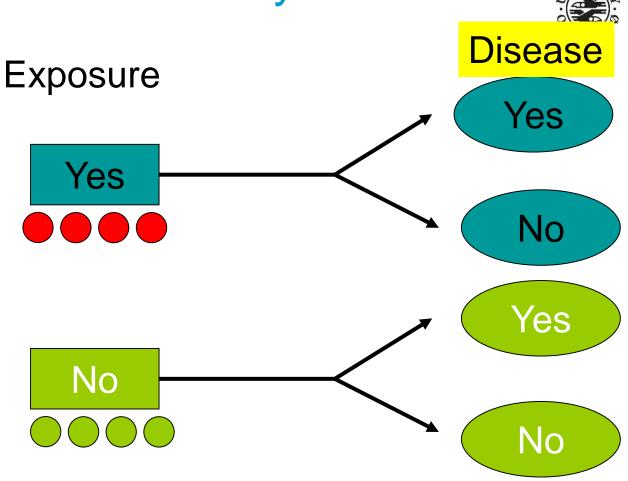
This material was realised with the EEA Financial Mechanism 2014-2021 financial support. Its content (text, photos, videos) does not reflect the official opinion of the Programme Operator, the National Contact Point and the Financial Mechanism Office. Responsibility for the information and views expressed therein lies entirely with the author(s).

UiT

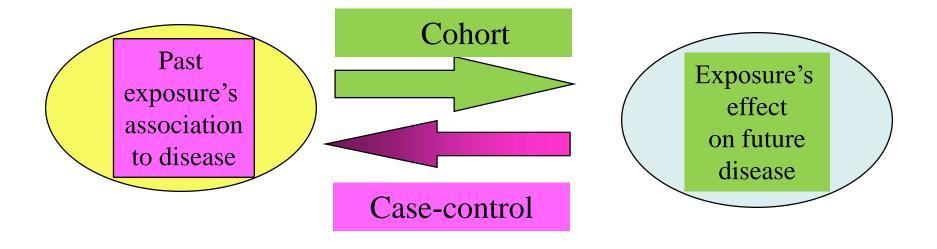
NORGES ARKTISKE UNIVERSITET


23. October 2019

Cohort design


Finn Egil Skjeldestad
Institute of community medicine
UiT The arctic university of Norway
Tromsø
Norway

Diseasefree general population



Cohort study

Cohort vs. case-control design

Selection of study population

- General population
- Repetetive populationbased studies
 - *The Tromsø study (7 repetions with biobanks), HUNT* (another populationbased study in Norway)
- Work-related databases
- By residence*
- Other groups
 - Etnic groups, religious groups
 - Professional databases
 - Nurses' Health Study
- Public/private insurance databases
- Military/veteran databases

Measuring exposure

T0-baseline – change in exposure from baseline

Exposure measured for each individual at the beginning of the study and assessed at intervals during the period of follow-up.

T0-baseline – change in confounders (co-morbidity)

Many cohort studies do only have exposure at baseline

Measuring outcome

T0 T1 T2 T3 10 yrs

Sources for outcome:

- Medical records
- Registry data
 - Cancer registry
 - Disease specific quality registers
 - Death certificates
- Direct from the participants

Method used to ascertain outcome must be identical registers

Notice the property of the prope

Follow-up

T0

T1

T2

T3

10 yrs

Passive follow-up through:

- Medical records
- Registry data
 - Cancer registry
 - Disease specific quality registers
 - Death certificates

Active follow-up by visits at interval

Direct from the participants

- Feasible
- Little costs/merging files
- Time-consuming
- Costly

Potential sources of bias in cohort studie

- Lost-to-follow-up (< 5% very good, > 20% not acceptable)
- ❖ Attrition rate (> 95% very good, < 80% not acceptable</p>
- Misclassification of exposure
 - Differential misclassification (unexposed are exposed; underestimation of the real effect)
- Misclassification of outcome (over-under-estimation of effect)
- Missed outcomes (lost-to-follow-up)
- Healthy worker effect (occupation) stay healthy continued participation

Inverse

Outcome measures – incidence/relative risk

Smoking and risk for MI

	MI +	Person-yrs	Incidencerate/ 1000 person-yrs
Smoke +	84	2700	31,1
Smoke -	87	5000	17,4

Relative risk (RR)

Incidence exposed
Incidence unexposed
17.4

OR ≈ RR when:

- The disease is rare
- The cases are representative of exposure to the diseased in the background population
- The controls are representative of exposure to those without disease in the background population

Number needed to treat:

- Prospective studies measure insidence differences
- Provide information for assessing how many persons who need to be treated to prevent one case from the «outcome»

NNT – number needed to treat

= 1/absolute decrease in risk

NNH – number needed to harm

= 1/absolute increase in risk

When treating atrial flutter with warfarin, the incidence of cerebral infarction are reduced from 5.1% to 1.8%. In order to prevent one cse of cerbral infarction you need to treat...

NNT= 1/(0.051-0.018)=1/(0.033)=33.3

Weaknesses of cohort studies

- Costly and time consuming sample size long follow-up time.
- Prone to bias due to loss to follow-up.
- Prone to confounding.
- Participants may move between one exposure category multiple f-up
- Knowledge of exposure status may bias classification of the outcome
- Being in the study may alter participant's behaviour.
- Classification of individuals (exposure or outcome status) can be affected by changes in diagnostic procedures
- Poor choice for the study of a rare disease

Strengths of cohort studies

T0 T1 T2 T3 10 yrs

- Can measure incidence and prevalence
- Exposure is measured before the onset of disease (in prospective cohort studies, measurement of exposure is unrelated to disease)
- Demonstrate direction of causality
- Multiple outcomes can be measured for any one exposure
- Good for measuring rare exposures, for example among different occupations